2012

The Missing Lending Link: Why a Federal Loan Guarantee Program is Critical to the Continued Growth of the Solar Power Industry

Daniel K. Tracey

Follow this and additional works at: http://scholarship.law.unc.edu/ncbi

Part of the Banking and Finance Law Commons

Recommended Citation
Available at: http://scholarship.law.unc.edu/ncbi/vol16/iss1/13

This Notes is brought to you for free and open access by Carolina Law Scholarship Repository. It has been accepted for inclusion in North Carolina Banking Institute by an authorized administrator of Carolina Law Scholarship Repository. For more information, please contact law_repository@unc.edu.
The Missing Lending Link: Why a Federal Loan Guarantee Program is Critical to the Continued Growth of the Solar Power Industry

I. INTRODUCTION

Solar power’s once bright future as a utility-scale\(^1\) power source may be in jeopardy.\(^2\) Just as the industry began to overcome the deep-rooted hurdles of high equipment costs and low efficiency,\(^3\) it now faces another challenge: debt financing. In September 2011, the federal loan guarantee program available to renewable energy generation projects utilizing commercially-proven technologies (1705 Program)\(^4\) expired, ending a crucial incentive for banks to lend to solar projects,\(^5\) and in all

5. This Note focuses on solar power; however, the same or similar challenges apply to wind, geothermal, and a host of other renewable energy generation sources. *See generally* EDISON ELECTRIC INST., RENEWABLE ENERGY: GROWTH AND CHALLENGES IN THE ELECTRIC...
likelihood stalling “one of the financial engines powering” clean energy investments across the United States.

The 1705 Program was a keystone piece in the solar energy puzzle. From July 2009 through September 2011, the Department of Energy (DOE), acting under the authority of section 1705 of the Energy Policy Act of 2005 (EPAct), guaranteed approximately $12 billion in loans to twelve utility-scale solar power generation projects. While the 1705 Program was originally intended as a “temporary program” to address the economic downturn beginning in 2008, it proved to be a catalyst for solar power generation. With the expiration of this critical lending incentive, equity investors, project developers, and technology providers are hesitant to finance solar energy projects in full.

The bankruptcy of solar power component manufacturer Solyndra LLC, a loan guarantee recipient under the now-expired 1705 Program, brought to light a simple, yet serious flaw in the previous program: the federal government provided loan guarantees to both manufacturing facilities and power generation facilities without accommodating for the different risk profiles of the two types of projects. A new federal loan guarantee program restricted to energy generation facilities powered by commercially-mature renewable energy technology addresses this exact concern. Such a program will mitigate technological, operational, and financial risk, while still meeting the

9. 1705, U.S. DEP’T OF ENERGY LOAN PROGRAMS OFFICE, https://lpo.energy.gov/?page_id=41 (last visited Jan. 18, 2012) (“Section 1705 is a temporary program designed to address the current economic conditions of the nation. It authorizes loan guarantees for certain renewable energy systems, electric power transmission systems and leading edge biofuels projects that commence construction no later than September 30, 2011.”).
10. See infra Part V.B.
11. See BROWN, supra note 8, at 7-8 (“Section 1705 solar projects fall into one of two categories: (1) solar manufacturing, or (2) solar generation. Risk characteristics for each category are distinctly different and solar manufacturing projects are generally considered higher risk than solar generation projects because the latter can use contractual mechanisms to reduce market, project, and financial risks.”).
goals of increased renewable energy, job creation, and domestic technology growth.12

Following this introduction, Part II of this Note will outline the solar industry’s significant progress over the last half decade.13 Part III discusses the current federal government’s renewable energy policy, which uses tax credits, depreciation and, until recently, loan guarantees to incentivize project development.14 Next, Part IV highlights innovative financing structures that enable investors in utility-scale solar projects to capture these federal incentives.15 Part V reviews the successes, and notable failure, of the expired 1705 Program.16 Finally, Part VI lays out why a new, more narrowly tailored loan guarantee program limited to power generation projects will reduce the overall risk to taxpayers while still promoting the use and adoption of utility-scale solar power.17

II. GLOBAL GROWTH IN THE UTILITY-SCALE SOLAR MARKET

"The tipping point where renewables become the predominant energy option now appears closer than it did just a few years back."18 In places like Hawaii, with high electricity rates and abundant sun, photovoltaic-generated (PV)19 solar energy is already cheaper than buying electricity from the grid.20 The cost per watt for energy

\begin{itemize}
 \item 12 See id. at 8.
 \item 13 See infra Part II.
 \item 14 See infra Part III.
 \item 15 See infra Part IV.
 \item 16 See infra Part V.
 \item 17 See infra Part VI.
 \item 19 A typical photovoltaic panel contains a silicon wafer that is treated to form differently charged n-type and p-type silicon, which together create an electric circuit; sunlight activates the solar cell's circuit to create electricity and manufacturers typically connect multiple solar cells to construct a solar module. See Julie Burlage, Financial Viability of a 2MW Solar Photovoltaic Installation in the Industrial Sector of New Jersey (Aug. 28, 2009) (unpublished Master’s thesis, Nicholas Sch. of the Env’t and Earth Sci.) (on file with Duke Univ. Librs.), available at http://dukespace.lib.duke.edu/dspace/handle/10161/1372?show=ful.
 \item 20 See Ben Sills, Solar Panels Start to Outshine Mirrors, BLOOMBERG BUSINESSWEEK,
generated by utility-scale PV systems fell by twenty-six percent in 2010 and an additional twelve percent in the first six months of 2011.21 The price for PV modules, which comprise approximately half to two-thirds of a utility-scale solar project’s cost, dropped fifty-eight percent from 2008 to 2011.22

The recent drop in PV project costs makes it the current top choice among solar power technologies.23 In August 2011, Solar Trust of America, the American subsidiary of German solar energy conglomerate Solar Millennium AG, switched the technology on the world’s largest solar generating facility currently under development from concentrating solar power24 (CSP) to PV.25 Driving the rapid cost reduction in PV technology is China.26

The United States is a historically weak player in the solar industry; as of 2010, Germany, Spain, Japan, and Italy all led the U.S. in total installed PV capacity.27 Despite President Obama’s apparent enthusiasm for “green energy,” Chinese companies’ investment in

Oct. 13, 2011, at 65 [hereinafter Sills, Solar Panels] (arguing additionally that while solar thermal may not ever be able to compete with PV on pure cost, its ability to store power by heating vats of liquid salt may keep it relevant; the International Energy Agency predicts more than one hundred fold increase in solar thermal capacity by 2020, even in light of the recent PV price drop).

21. Tracking, supra note 2, at 2.

24. See Concentrating Solar Power, NAT’L RENEWABLE ENERGY LAB. (July 11, 2011), http://www.nrel.gov/learning/re_csp.html (explaining that concentrating solar uses hundreds or thousands of U-shaped mirrors to redirect and focus sunlight on fluid filled tubes, and the hot fluid is in turn used to boil water, turning a turbine generator to produce electricity).

American projects may outpace that of our own government. In 2011, a single Chinese company and its American subsidiary announced plans to invest more than $6 billion in U.S. clean energy through 2020. By comparison, the 111th Congress appropriated just $4 billion to support clean energy through loan guarantees over three years. Foreign investors' desire to invest equity in U.S.-based renewable energy projects illustrates the benefit our Internal Revenue Code (IRC) provides to equity investors that own projects, as compared to debt investors that simply earn a return on their loaned capital. The absence of a mature debt market for large-scale solar projects has led to relatively high costs for project debt, despite significant drops in the price of PV panels, labor, and the other project costs.

China attracted more new investment in renewable energy than any other nation in both 2009 and 2010, and over one-third of the world's total was directed to Chinese projects in 2010 alone. In terms of debt, the Chinese government has extended approximately $35 billion in credit to solar-energy companies since 2010. China Development Bank Corp., the world's largest lender to solar companies, offered $29 billion in credit to five Chinese PV panel manufacturers. As of November 2011, the group had tapped just $866 million, or less than three percent of available funds. Tens of billions of dollars

31. See Roberta F. Mann, Federal, State, and Local Tax Policies for Climate Change: Coordination or Cross-Purpose?, 15 LEWIS & CLARK L. REV. 369, 379 (2011) (“The federal government provides greater subsidies to the energy sector through the Internal Revenue Code (IRC) than by any other means.”).
32. See Tracking, supra note 2, at 2.
33. See MCCORONE, supra note 18, at 19.
34. See Sills, China, supra note 28.
36. See id.
remain available to Chinese PV panel manufacturers to support the research, development, and manufacture of more efficient solar power components – continuing to push solar power toward grid parity with other power generation sources.

III. U.S. INCENTIVES REWARD EQUITY INVESTMENT

U.S. solar companies and project developers rely on two types of federal incentives: tax credits and depreciation deductions. Both reward equity investment. The 1705 Program complemented these equity incentives by guaranteeing loans to qualified solar projects, but its expiration means a key component of the renewable energy project finance equation is missing.

A. Incentives for Equity Investment

The IRC provides three primary tax benefits for the equity investor in a renewable energy project: (1) the Production Tax Credit (PTC), which is an income tax credit that varies according to the amount of energy produced from "qualified sources" during a ten-year period. Wind power facilities are the primary recipient among the "qualified sources" eligible for the PTC, which also includes closed- and open-loop biomass and geothermal, among others. Solar power projects' eligibility for the PTC expired in 2005; thus, new solar developers wishing to take advantage of federal incentives are relegated to the Investment Tax Credit (ITC).

A non-operating owner of a renewable energy generation facility may not claim the PTC, thereby requiring a project finance structure that allows the passive equity investors to meet operating requirements.

38. § 48.
42. § 45(d)(4).
43. § 45(d)(3)(C) ("[T]he person eligible for the credit allowable under subsection (a) shall be the lessee or the operator of such facility.")
The ITC, the primary federal incentive for solar power development, provides an income tax credit equal to a specified percentage of the “energy property” placed in service during the taxable year.\(^4\) Currently, the ITC is thirty percent for qualified solar facilities, fuel cells, and small wind (under 100 kilowatts), and ten percent for other qualifying “energy property.”\(^4\) In order to take the credit, the taxpayer must either construct the solar facility or acquire ownership at the time operation commences.\(^4\) Equity investment in utility-scale solar facilities benefits from the thirty percent credit through January 1, 2017, at which point solar projects will only be eligible for a ten percent credit.\(^4\)

In addition to the PTC and ITC, the federal government allows the recovery of equity investment in certain types of property, including solar power facilities, through depreciation deductions to taxable income.\(^4\) The Accelerated Cost Recovery System provides a five-year depreciation schedule for solar facilities qualifying for the ITC.\(^4\) Thus, the owner of a solar energy facility that qualifies for the ITC may write off approximately one-fifth the asset value during each of the facility’s first five years.\(^5\)

The Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010\(^5\) amended the existing

\(^4\) § 48(a). For “equipment which uses solar energy to generate electricity,” the thirty percent credit may be utilized if the construction or acquisition occurs prior to Jan. 1, 2017. Id.

\(^5\) Id. For example, a coal plant is eligible for a ten percent tax credit under the ITC. Id.

\(^6\) § 48(a)(3)(B); see also Memorandum from Cadwalader, Wickersham & Taft LLP, Investment in Alternative Energy After the End of Cash Grants, to Clients & Friends 12 (Sept. 6, 2011) [hereinafter Investment in Alternative Energy], available at http://www.cadwalader.com/assets/client_friend/090611InvestmentAlternativeEnergy.pdf (explaining that the ITC is not available to a secondary purchaser of property that is already producing energy).

\(^7\) § 48(a)(2).

\(^8\) § 168(k) (listing depreciation deductions according to property type; not specific to the renewable energy industry).

\(^9\) § 168(e)(3)(B)(vi).

federal depreciation provisions for solar facilities, providing that qualified property placed in service after September 8, 2010 and before January 1, 2012 qualifies for one-hundred percent bonus depreciation.52

As tax-related benefits, the PTC, ITC, and depreciation deduction all require a tax burden against which each benefit may be applied.53 Thus, the widespread drop in taxable corporate profits in 2008 posed a significant problem for renewable energy project development. In response to this very issue, Congress included two provisions that sustain investment in the domestic solar power industry in two broader omnibus bills. First, the Emergency Economic Stabilization Act, which President Bush signed into law on October 3, 2008, extended the ITC's thirty percent rate for solar facilities until the end of 2016.54 Second, and perhaps more impactful, section 1603 of the American Recovery and Reinvestment Act of 2009 (ARRA), allowed renewable energy project developers the option of taking a cash grant in lieu of the ITC (Cash Grant Program).55

According to the National Renewable Energy Laboratory (NREL), the Cash Grant Program served as the most important federal incentive for solar power in 2010 and the first half of 2011, the last period for which data is available.56 However, the Cash Grant Program

52. Id.; see also DSIRE, supra note 50 (noting that through Dec. 31, 2011, renewable energy projects that qualify for the ITC are eligible for one-hundred percent depreciation bonus in the first year).
56. See Michael Mendelsohn & Ryan Hubbell, Nat'l Renewable Energy Lab., Presentation on NREL's Renewable Energy Financial Tracing Initiative 1H 2011 Summary 48 (Sept. 29, 2011), available at http://financere.nrel.gov/finance/webfm_send/60/Q410_REFTI_Presentation_%2818_May_2011%29.pdf (showing that among survey respondents constructing PV facilities over 1 MW in size, approximately sixty percent viewed the Cash Grant Program as “extremely” important, and approximately twenty percent viewed it as “very” important).
expired on December 31, 2011, and given the legislative gridlock that typically precedes an election, commentators do not expect an extension of the program prior to the 2012 elections. Not to worry, as taxable corporate profits rebound, “tax equity investors” will likely maintain the flow of equity investment to renewable energy projects.

B. Tax Equity Investors

Tax equity investors are passive owners of an asset or project that provides not only a return based on the asset’s cash flow but also from federal tax deductions or credits. The ITC, PTC and Cash Grant Program led to more than $4 billion in tax equity commitments to renewable energy projects in the first half of 2011, the most recent period on which data is available. Federal tax equity benefits often make up as much as sixty percent of a typical renewable energy project cost, and thus are critical to the solar industry’s continued progress. Until the expiration of solar power’s thirty percent ITC in 2017, profitable corporations will have a strong incentive to own or otherwise contribute equity to solar generation facilities.

58. See CHADBOURNE & PARKE LLP, U.S. POLICY OUTLOOK FOR RENEWABLE ENERGY 2-5 (2011), available at http://www.chadbourne.com/files/Publication/54c0249b-9d5c-c403-8d35-28a1a1a33a84/Presentation/PublicationAttachment/77e5cb70-20be-545e-5448-2c4e4d21153a/fin_June11.pdf (discussing the consensus opinion by Rob Gramlich, senior vice president of public policy for the American Wind Energy Association, Greg Wetstone, vice president for governmental affairs for Terra-Gen Power, and Jon Chase, vice president of government relations at Vestas Americas that the cash grant program is unlikely to be renewed prior to 2012 elections).

59. See infra Part III.B.

60. Cargas, supra note 54, at 2.

Tax equity investors are already returning to large-scale renewable projects en masse. In 2008, approximately twenty tax equity investors financed renewable energy projects; in 2009, as revenues slid and taxable profit disappeared, only four to six investors remained active. As of July 2011, there were at least fifteen active tax equity investors in renewable energy, including Google Inc., Citigroup Inc., US Bancorp, and PG&E Corp. As experienced tax equity investors return to the renewable energy market, syndicators are also introducing new private equity investors to tax equity opportunities in renewable energy. Thus, solar projects should have the tools to attract equity, at least through the expiration of the ITC in 2016. Whether they can attract debt is the real key to the utility-scale solar industry going forward.

IV. SOLAR PROJECT FINANCE AND THE MISSING LENDING LINK

Despite the solar power industry’s recent growth, “balance sheet financing” is possible for few of the utility-scale solar projects that

64. Cargas, supra note 54, at 2.

often require hundreds of millions of dollars in capital investment. Usually, poorly-capitalized project developers and risk-averse utilities cannot develop renewable energy generation projects alone. Therefore, utility-scale solar projects depend on “project finance” structures to fund development, making lenders an integral part of the process. Two particular structures, the “flip” partnership and the sale-leaseback, allow developers, as opposed to an investor-owned utility or other power purchaser, to shoulder the risk through the early stages of the project. Equally as important, project finance structures also allow the passive equity investor to capture the appropriate federal tax credit and accelerated depreciation.

A. Solar Project Finance Structures

The “flip” partnership requires the equity investor and the project developer to form a partnership, or limited liability company taxed as a partnership, that will develop, own and operate the renewable

70. See Mark Bolinger, Financing Non-Residential Photovoltaic Projects: Options and Implications, Lawrence Berkeley Nat'1 Lab. ii (2009), available at http://cetd.lbl.gov/ea/cms/reports/lbnl-1410e.pdf (noting that projects hoping to proceed using balance sheet finance will face many barriers, including “high up-front costs, a steep learning curve for a non-core business function, technology and performance risk, and a potential inability to make efficient use of the project’s [tax benefits]”).

71. See Ucilia Wang, The Numbers Game, PV Magazine, June 2010, at 32, available at http://www.pv-magazine.com/archive/articles/beitrag/the-numbers-game-_100000962/86/?tx_ttnews[backCat]=128&cHash=01d0f9b163de7c60e305af1ac34bc90 (explaining that many “poorly capitalized developers” underestimate the “hefty investment” required during the early stages of solar power project development).

73. “Project finance” is one way to fund a project that depends not on the creditworthiness of the borrowers or value of the underlying asset, but on the project’s ability to repay the debt through cash flows at a rate consistent with the project’s risk. A project finance deal is defined by five key components: (1) the debtor is a special-purpose vehicle (SPV), typically created by sponsor equity and mezzanine debt, which is financially and legally independent of the sponsors; (2) lenders have only limited recourse to the sponsors; (3) project risks are allocated equitably among all parties in the transaction; (4) cash flows generated by the SPV are sufficient to cover operating costs and service the debt in terms of both capital repayment and interest; (5) collateral is given by sponsors as security for receipts and assets used to manage the project. Stefano Gatti, Project Finance in Theory and Practice 2 (2008).

75. See infra Part IV.A.
energy facility. Typically, the partnership then allocates 99% of its taxable income (or loss) and 99% of the associated tax credits, to the equity investor, with the remaining income/loss and credits allocated to the developer. Upon completion of the project, cash distributions from operations are usually split, with 99% accruing to the equity investor and 1% to the developer. After the equity investor has received its targeted return, the “flip” in allocation typically occurs such that approximately 95% of distributions accrue to the developer and 5% to the investor. Following the flip, which typically occurs concurrently with the expiration of the tax credits, the developer often has an option to purchase the investor’s interest in the project for fair market value.

Unlike the “flip,” the sale-leaseback structure allows a solar project to proceed in the absence of developer capital, with one-hundred percent financing of the equity contributed by passive equity investors. The sale-leaseback project structure requires that the equity investor purchase the energy generation facility no more than ninety days after it was originally placed in service. Typically, the investor uses a combination of equity and non-recourse debt to finance the purchase, with the equity component required to comprise at least twenty percent of the capitalized cost of the facility for the IRS to recognize the tax benefit. The investor then leases the facility back to the developer to operate and maintain for a term that may not exceed eighty percent of the facility’s useful life, generally as determined by an independent

77. Id. at 2 (noting that Revenue Procedure 2007-45 IRB 967 provides a safe harbor for a “flip” partnership and requires, among other things, that the developer has a minimum one percent interest in the partnership’s income/loss, deduction and tax credits at all times during the partnership’s existence, the equity investor has exposure to material income and gain items equal to at least five percent of equity investment, minimum equity percentages by equity partner, etc.).
78. Id.
79. Id.
80. See id. The taxpayer may claim an inflation-adjusted tax credit per kilowatt hour of electricity produced for a “10-year period beginning on the date the facility was originally placed in service . . .” 26 U.S.C. § 45(a)-(b) (2006).
81. Investment in Alternative Energy, supra note 46, at 3 (explaining that safe harbor requirements include: equity investor makes and maintains at least twenty percent equity investment of capitalized cost of lease facility, term of lease does not exceed eighty percent of economic life of leased facility, at end of lease term the expected value of facility is equal to at least twenty percent of original capitalized cost).
82. Id.
In order for the equity investor in a sale-leaseback arrangement to claim ownership, and the tax credits that accrue to the owner, the arrangement must be a "true lease" for federal income tax purposes. Investors may meet this standard by complying with the safe harbor in IRS Revenue Procedure 2001-28.

B. Domestic Lending Shortfall

A small number of European banks have traditionally dominated global renewable energy project lending. In particular, German commercial banks lead the world in providing debt for renewable energy project finance. Of the roughly $78 billion in solar energy project financing that occurred in 2010, forty-five percent of it occurred in Germany.

Despite increasing U.S. demand for solar projects, domestic lenders remain "years behind their European counterparts." More recently, U.S. banks have been "eyeing renewable energy projects," and as one financier notes, "if the developer offers a financeable project, the lender will be there." According to these lenders, a "financeable" project includes proven technology (such as PV, wind turbines, and geothermal), contracts with established manufacturers and contractors, and perhaps most importantly, a power purchase agreement (PPA) with a reliable buyer. A PPA is a long-term contract, typically lasting for ten or twenty years, to buy energy at a fixed price from a specific source. The customer may be anyone, but it appears lenders prefer

83. Id.
84. Id.
85. See Rev. Proc. 2001-28, 2001-19 I.R.B. 1156 (stipulating that a lease for federal income tax purposes must meet "minimum unconditional 'at risk' investment" by the lessor, contain certain lease term and renewal requirements, meet requirements for purchase and sale rights, and meet a number of other guidelines); Investment in Alternative Energy, supra note 46, at 4 (listing the "key" requirements of Revenue Procedure 2001-28).
87. See Wood, supra note 69.
88. Id.
89. Wood, supra note 69.
90. Id.
91. See Marc Gunther, For solar energy, the future looks bright, FORTUNE (Oct. 4,
PPAs with institutional, low-risk buyers such as Wal-Mart Stores, Inc. or investor-owned utilities, both of which regularly contract to buy solar power.92

Despite customer-demand typically fixed by contract for twenty years, domestic banks are reticent to lend to solar projects because they “just don’t like to go long on debt.”93 Furthermore, many commercial banks do not have the appetite or experience to support utility-scale solar projects.94 For example, even with a $1.6 billion federal loan guarantee, BrightSource Energy, Inc.’s massive Ivanpah solar energy facility relied on debt financing from the Federal Financing Bank, as opposed to a private lender.95 The lack of domestic lending poses a significant obstacle for utility-scale solar facilities that, like other infrastructure projects, require long-term financing over the entire period covered by the PPA. The best way to convince domestic lenders to “go long” on utility-scale solar project debt is for the federal government to provide a safety net through the provision of loan guarantees. From 2009 to 2011, during the administration of the federal loan guarantee program, domestic bank lending increased as solar projects generated higher than expected returns.96

92. Id.
94. Terrance Murray, Details on NRG Energy’s $300M Ivanpah Investment, GREEN ENERGY REPORTER (Oct. 27, 2010, 3:51 PM), http://www.greenenergyreporter.com/renewables/solar/details-nrg-energys-300m-ivanpah-investment/. The CEO of solar thermal system designer and developer BrightSource explained that the DOE loan guarantee is critical since he “doubts” commercial banks have the appetite to support billion dollar renewable energy projects following the 2008 downturn. Id.
96. See Daily & Groom, supra note 88 (offering the view of a senior executive at Sharp Solar Energy Solutions Group that higher than expected returns have caused lenders to grow “more comfortable with solar technology”).
V. THE “OLD” LOAN GUARANTEE PROGRAMS

A. **Section 1703 and Section 1705 Loan Guarantee Programs**

In the EPAct, Congress defines a “loan guarantee” as “any guarantee, insurance, or other pledge with respect to the payment of all or a part of the principal or interest on any debt obligation of a non-Federal borrower to a non-Federal lender . . .” 97 The EPAct empowers the Secretary of Energy, after consulting with the Secretary of Treasury, to make loan guarantees for qualified renewable energy projects and with the appropriate terms and conditions. 98 In the event a developer defaults on its federally guaranteed debt, the holder of the loan guarantee has the right to demand payment of the unpaid amount from the Secretary of Energy. 99 From 2009 through 2011, the DOE administered two different federal loan guarantee programs. While one was permanent and the other temporary, both purported to support domestic clean energy. 100

Congress established the permanent loan guarantee program under section 1703 of the EPAct for projects that “avoided, reduced or sequestered air pollutants” and employed “new or significantly improved technologies as compared to commercial technologies.” 101 Projects that avoided air pollutants using “technology in general use in the commercial marketplace,” such as PV and wind turbines, were therefore not eligible for the loan guarantees under Section 1703. 102 The 1703 loan program remains in place today and since 2009 has conditionally committed approximately $11 billion in guarantees across four projects, including $8.3 billion for the construction and operation

98. Requirements include: the loan guarantee “shall not exceed an amount equal to 80 percent of the project cost,” there must be a “reasonable prospect of repayment of principle and interest,” the “obligation shall be shall be subject to condition that the obligation is not subordinate to other financing,” “interest at a rate that does not exceed a level that the Secretary determines appropriate, taking into account the prevailing interest in the private sector for similar loans and risks,” and “full repayment over a period not to exceed the lesser of—(1) 30 years; or (2) 90 percent of the projected useful life of physical asset to be financed,” among others. See 42 U.S.C. § 16512 (2006).
99. Id.
100. 42 U.S.C. §§ 16511-16 (Supp. IV 2010).
101. Id. § 16513.
102. See id.
of two new reactors at Georgia Power Company’s Vogtle nuclear power plant.103

In 2009, Congress created the 1705 Program: a second, temporary loan guarantee program “for [the] rapid deployment of renewable energy and electric power transmission projects[.].”104 Section 406 of the ARRA amended Title XVII of the EPAct to include the additional section 1705, which, unlike section 1703, provided for guarantees to projects utilizing commercial technologies.105 Additionally, Congress appropriated $4 billion to pay the costs of implementing the 1705 Program.106

B. Past Successes of 1705 Program

The 1705 Program facilitated a leveraged approach to renewable energy development that provided an estimated ten dollars in loan guarantees for every dollar appropriated to the program.107 Even with a thirty-three percent funding cut,108 the 1705 Program was extremely successful; from September 2009 through September 2011, the DOE dispersed roughly $12 billion in loan guarantees for solar power generation projects.109 Four of the five largest PV farms in the world are under development in the United States at least in part thanks to the 1705 Program.110

103. See Our Projects, U.S. DEP’T OF ENERGY LOAN PROGRAMS OFFICE, https://lpo.energy.gov/?page_id=45 (last visited Feb. 7, 2012), for a list of projects receiving loan guarantees. But see Fred Sissane et al., CONG. RESEARCH SERV., R40414, ENERGY PROVISIONS IN THE AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 (P.L. 111-5) 11 n.33 (2009) (noting the sluggish rate at which loan guarantees were awarded under the Section 1703 Program and specifically citing that in the first four years of the program’s existence “no guarantees had been awarded to any type of technology”).

105. Id.

106. House Jobs Bill Would Restore $2 Billion For Loan Guarantees, Makes Other Changes, 93 Banking Rep. (BNA) No. 1238 (Dec. 22, 2009) (explaining that of the $6 billion Congress allocated to the loan guarantee program, $2 billion was reallocated to pay for the “Cash for Clunkers” program).

107. Id.

108. Id.

109. BROWN, supra note 8, at 1.

American lenders demonstrated the importance of the program on its final day before expiration. On September 30, 2011, the DOE confirmed loan guarantees to three utility-scale solar generation projects: First Solar’s 550 Megawatts (MW) Desert Wind and 230 MW Antelope Valley Solar Ranch One projects, and SunPower Corp.’s 250 MW California Valley Solar Ranch project. Coincident with the federal loan guarantees, Goldman Sachs and Citigroup, and the Treasury-run Federal Financing Bank announced they would provide debt financing to the Desert Wind and Antelope Valley projects, respectively. The dominoes continued to fall, as all three projects sold that same day. Over $3 billion in financing went firm and more than 1000 MW of future energy generation capacity changed hands in a matter of hours as a direct result of the loan guarantees.

Outside the United States, loan guarantee programs have successfully stimulated investment in strategically-important infrastructure. For example, in 2008, France instituted €8 billion in guarantees to support high-speed train development, which kept more than €20 billion in projects on track. Unfortunately, the 1705 advantageous-over-distributed-rooftop-solar-and-why-utilities-love-them/.

111. See infra notes 112-17 and accompanying text.
115. See Desert Sunlight, supra note 112; Exelon, supra note 113.
116. See Desert Sunlight, supra note 112 (highlighting the sale of Desert Wind to affiliates of NextEra Energy Resources, LLC and GE Energy Financial Services, with each owning a fifty percent stake in the project); Exelon, supra note 113 (highlighting the sale of Antelope Valley Solar Ranch One to Exelon); NRG, supra note 114.
117. See Desert Sunlight, supra note 112; Exelon, supra note 113; NRG, supra note 114.
118. See CHADBOURNE & PARKE LLP, Outlook for Private Investment in US Infrastructure, PROJECT FIN. NEWSWIRE, at 24, 31 (Keith Martin ed., June 2011), available at http://www.chadboume.com/files/Publication/54e0249b-995c-4e03-8935-28a1a1a33a84/Presentation/PublicationAttachment/77e5cb22-e0be-45de-a448-2c4e4d21153a/pfn_June11.pdf (quoting comments of Fadi Selwan, chief operating officer of VINCI Concessions / Development, an international developer of infrastructure).
Program’s successes have been overshadowed by its most notable failure— the bankruptcy of loan guarantee recipient Solyndra LLC (Solyndra).

C. The Solyndra Bankruptcy

On September 4, 2009, the DOE announced that it had finalized a $535 million loan guarantee to Solyndra.119 It was the first loan guarantee under the 1705 Program.120 Almost exactly two years later, on September 1, 2011, Solyndra announced, “it was ceasing operations, laying of [sic] 1,100 workers and preparing to file for bankruptcy protection.”121 Solyndra manufactured slightly more efficient PV “tubes” (as opposed to panels), and when prices on traditional PV panels dropped forty percent, Solyndra’s technology was not competitive.122 The immediate result of Solyndra’s bankruptcy was widespread criticism of the federal loan program as a whole; pundits from across the political spectrum pointed to the loan guarantee program as another example of ineffective stimulus of private industry.123 During a September 14, 2011, Congressional hearing, Republicans and Democrats came together to agree that the DOE’s loan guarantee to Solyndra was a bad decision.124

122. See supra Section II.
124. See Memorandum from the Comm. on Energy and Commerce on The Solyndra Story (Sept. 14, 2011), available at http://republicans.energycommerce.house.gov/Media/file/Hearings/Oversight/091411/SolyndraStoryFinalMemo.pdf ("[D]OE and OMB did not take adequate steps to protect taxpayer dollars. Emails and communications produced to the Committee show that DOE and OMB staff repeatedly questioned whether the company had the financial resources to support the operations of the loan guarantee project"); Solyndra Cancels IPO Plans, Instead Sells Debt, BLOOMBERG BUSINESSWEEK (June 18, 2010, 7:34 AM).
While politicians point to a loan guarantee program rife with "cronyism" as the impetus behind Solyndra's failure, a more careful analysis reveals two procedural errors that doomed the Solyndra transaction. First, the Secretary of the DOE agreed to subordinate the federal loan guarantee's first lien claim on Solyndra's assets to a subsequent $75 million credit agreement from private investors. In doing so, the DOE violated its own rule that forbid the loan guarantee obligation from being subordinated to other financing, though allowing for pari-passu lending at the discretion of the Secretary. Second, the DOE and Office of Management of Budget (OMB) appeared to accelerate the review process, granting Solyndra preliminary loan guarantee approvals while skipping the "mandatory evaluations of the financial and engineering viability of the projects.

These now politically-charged procedural issues overshadowed a deeper, though simpler, structural error in the 1705 Program, namely, that the DOE was encouraged to guarantee loans to immature start-up companies with the same frequency and terms as those offered to energy generation facilities utilizing mature PV and other renewable energy technologies. In effect, the funds unnaturally accelerated the evolution of a start-up company. Furthermore, Congress failed to
prescribe an effective method to mitigate the operational and technological risks inherent in lending hundreds of millions of dollars to immature businesses. Where a private lender would typically seek either an equity stake in the start-up or an above market interest rate, the federal government chose neither, apparently willing to subjugate taxpayer welfare for job creation.

However, a loan guarantee program supporting America’s transition to renewable energy need not expose taxpayer funds to the risks inherent in “picking winners and losers” by guaranteeing loans to unproven technology manufacturers like Solyndra.¹³¹

VI. THE PATH FORWARD: A NEW LOAN GUARANTEE PROGRAM

In total, the Loan Program Office (LPO) awarded approximately $17 billion in loan guarantees under the 1705 Program, eighty-two percent of which went to support two types of solar projects: manufacturing facilities and power generation facilities.¹³² Both project types clearly serve the solar power industry; however, a program that provides loan guarantees to emerging technology manufacturing businesses like Solyndra and commercially-proven generation projects under the same system runs counter to private sector lending conventions and obfuscates the programs’ stated mission to cost-effectively support the construction of renewable, clean energy.¹³³ With

http://abcnews.go.com/Blotter/solyndra-lowest-interest-rate/story?id=14460246 (explaining that the loans to Solyndra came with “advantegous terms in spite of red flags” such as a B+ grade from one rating agency and a “fair” grade from Dun & Bradstreet); Jeff St. John, China’s Solar Loans Still Mostly Untapped, GREENTECHSOLAR (Nov. 17, 2011), http://www.greentechmedia.com/articles/read/chinas-solar-loans-still-mostly-untapped/ (presenting evidence that China’s loans to solar manufacturers are reported to be changing interest in the 4-5% range, much higher than loans to Solyndra).

¹³² See BROWN, supra note 8, at 1.

¹³³ Our Mission, U.S. DEPT. OF ENERGY LOAN PROGRAMS OFFICE, https://lpo.energy.gov/?page_id=17 (last visited Nov. 11, 2011) (“The mission of [the Loan Programs Office] is to accelerate the domestic commercial deployment of innovative and advanced clean energy technologies at a scale sufficient to contribute meaningfully to the achievement of our national clean energy objectives—including job creation; reducing dependency on foreign oil; improving our environmental legacy; and enhancing American competitiveness in the global economy of the 21st century.”).
only minor amendments to the now expired 1705 Program, a new loan guarantee program restricted to solar energy generation facilities will not only promote lending to utility-scale solar projects, but also (A) eliminate much of the previous program’s risk exposure, (B) create jobs, and (C) stimulate technological progress.

A. Reduced Risk

According to the Congressional Research Service, “solar manufacturing projects are generally considered higher risk than solar generation projects because the latter can use contractual mechanisms to reduce market, project, and financial risks.”134 Energy generation projects typically allow for more flexibility on the part of the developer to protect taxpayer investment, since the goal is not deployment or manufacture of a specific technology but rather the cost-effective construction of renewable energy. In 2010 and 2011, solar developers switched nine projects, amounting to more than 4,500 MW in generating capacity, from solar thermal technology to cheaper PV.135 In August 2011, Solar Trust of America announced that the Blythe Solar Power Project was switching from CSP to PV technology for its first phase of construction, which required the project to forfeit $2.1 billion loan guarantees.136 Thus, a new loan guarantee program restricted to solar power generation projects takes advantage of the project developers’ and Congress’ shared interest to construct cost-effective solar power with the most efficient technology.

A generation-focused guarantee program will also keep the federal government out of the business of making bets on specific technologies.137 In the final tally, DOE’s losses on Solyndra will pale in comparison to those of private investors; venture capital (VC) firms invested more than $1 billion in the company, making Solyndra possibly “the largest VC loss ever.”138 However, in contrast to the DOE

134. See BROWN, supra note 8, at 6.
137. Lipton & Broder, supra note 127 (quoting Damien Lavera, a DOE spokesman) (“We did the analysis on our own and decided [the Solyndra loan guarantee] was a good bet.”).
138. See Jennifer Kho, What the Solyndra Bankruptcy Means for Clean Tech Investors, FORBES (Sept. 23, 2011, 10:08 PM),
Loan Programs Office, VC investors owned an equity interest that would have permitted them to share in Solyndra’s profit had the company been successful. Commentators express a legitimate concern that loan guarantees subject taxpayers to only the most risky loans that private industry is unwilling to underwrite. In addition, legislators correctly attacked the provision of loan guarantees to unproven technology companies, questioning whether the government is qualified to act as a venture capitalist. A new loan guarantee program restricted to proven renewable generation projects addresses these concerns by limiting the government’s role in the choice of technology decision, and incentivizing the developer to construct the facility using the most cost-effective manner possible.

B. Job Creation

The 2008 financial downturn, and President Obama’s need to jumpstart the economy, led the executive branch to rebrand its support for renewable energy as a job creation mechanism. For example, in September 2011, the Export-Import Bank of the United States guaranteed $455 million in commercial loans to two solar projects in Ontario, Canada, under the theory that the projects will create an estimated 550 jobs in First Solar Inc.’s Ohio manufacturing facility. The executive branch need not look to manufacturing alone for job creation.

139. Lisa Margonelli, How the U.S. Can Be Effective – Room for Debate, N.Y. TIMES (Oct. 28, 2011, 10:43 AM), http://www.nytimes.com/roomfordebate/2011/09/20/why-isnt-the-us-a-leader-in-green-technology/how-government-can-stimulate-green-technology (arguing that when it the government lends to fledgling businesses, it runs the risk of supporting overly risky projects, and thus should stick to its “supporting basic research” and fostering an environment in which private investors, not taxpayers, provide capital to grow companies).

140. Snyder, supra note 131.

A new loan guarantee program for renewable energy generation projects will directly address both Congress’ desire to create jobs and the stated purpose of the previous 1705 Program to “encourage commercial use in the United States of new or significantly improved energy-related technologies and to achieve substantial environmental benefits.”143 The Alliance for American Manufacturing, in conjunction with the Political Economy Research Institute, released a 2009 study, aptly titled \textit{How Infrastructure Investments Supports the U.S. Economy: Employment, Productivity and Growth}. The authors’ research demonstrates that a \$1 billion infrastructure investment creates twenty-two percent more jobs than an equal increase in consumer spending generated by tax cuts.144 Thus, not only will a loan guarantee program have the obvious effect of promoting lending, it will encourage domestic job growth.145

\textbf{C. Technological Progress}

A new loan guarantee program facilitates technological innovation by creating demand for more efficient, cost-effective solar panels irrespective of the technology. The market, not Congress or the DOE, picks winners. For example, the \$90.6 million loan guarantee under the 1705 Program to Cogentrix of Alamosa, LLC will support the construction of “one of the first utility-scale, high concentration photovoltaic (HCPV) energy generation facilities in the nation and, when completed, the largest of its kind in the world.”146 Whereas a manufacturer of HCPV technology would face a multitude of hard-to-mitigate market and operational risks, a single energy generation facility like Congentrix’s may use contractual mechanisms to mitigate some of

145 See id.

those same risks.147 With a new loan guarantee program focused on generating renewable energy as opposed to supporting a specific technology, the LPO refrains from breathing life into inefficient, noncompetitive solar power generating technologies.

Case in point is Stirling Energy Systems (SES), an Arizona-based manufacturer of solar power technology that was unable to obtain a federal loan guarantee for either its projects or manufacturing facilities and entered bankruptcy in September 2011.148 SES’s unique technology,149 like Solyndra’s, became prohibitively expensive150 as PV prices dropped in 2010 and 2011, and SES faced the same struggles as Solyndra to find third party financing.151 Projects originally specifying SES technology shifted to the more cost-efficient PV technology, actually decreasing the cost of those projects.152 Loan guarantees restricted to energy generation, as opposed to technology manufacture, allow the developer flexibility to evaluate market prices and trends to choose whichever generating technology will most efficiently serve the project’s needs. Again, Congress’ goal of generating cheap, reliable renewable energy is thereby aligned with that of the developer, who stands to profit from the most cost efficient choice.

147. See BROWN, supra note 8, at 6.
149. Ucilia Wang, Stirling Redesigns Suncatcher, Plans 1.5 MW Demo Project, GREENTECHSOLAR (June 23, 2009), http://www.greentechmedia.com/articles/read/stirling-energy-systems-redesigns-suncatcher-plans-for-1.5mw-demo-project/ (explaining that the SES technology uses a large parabolic dish of mirrors (40 feet across) to concentrate the sun onto a receiver housing hydrogen gas filled tubes, and the heated gas runs a four-cylinder Stirling engine that drives a generator to produce electricity).
151. See Sara Mitchell, Former Calico Manufacturer Declares Bankruptcy, DESERT DISPATCH (Oct. 2, 2011, 9:00 AM), http://www.desertdispatch.com/news/solar-11679-project-energy.html (noting that SES did not receive funding from the federal government, and the company’s bankruptcy was a direct result of its failure to find third-party investors).
152. Id.
VII. CONCLUSION

The expiration of the 1705 Program last September removed a key incentive for banks to lend to solar and other renewable energy projects. Major strides in solar power technology and project finance structures have positioned the solar industry for future success, yet lenders remain hesitant to finance utility-scale solar projects. It is this author’s belief that domestic lenders will eventually follow the lead of European banks and reduce the cost of renewable energy project debt. In the meantime, a federal loan guarantee program focused on energy generation projects utilizing commercially-proven technology will not only incentivize project lending so as to maintain the solar industry’s progress, it will also create jobs without exposing taxpayer dollars to the risks associated with lending to emerging technology manufacturers. Of course, we can also adhere to strict free market principles when it comes to renewable energy; but that choice comes with risks as well. *Fortune Magazine*’s Brian Dumaine warns, “If the subsidies are killed, America is choosing not to grow a new industry and create jobs. If we don’t want them, China, India and Japan are happy to take them.”

DANIEL K. TRACEY

153. *See supra* Part V.A-B.
154. *See supra* Part II.
155. *See supra* Part IV.A.
156. *See supra* Part VI.A-C.