10-1-2009

Feasibility and Carbon Capture and Sequestration: Will Commercial Deployment of Carbon Capture and Sequestration Pass the Test

Margaret S. Davis

Follow this and additional works at: http://scholarship.law.unc.edu/ncjolt

Part of the Law Commons

Recommended Citation
Available at: http://scholarship.law.unc.edu/ncjolt/vol11/iss1/7

This Notes is brought to you for free and open access by Carolina Law Scholarship Repository. It has been accepted for inclusion in North Carolina Journal of Law & Technology by an authorized administrator of Carolina Law Scholarship Repository. For more information, please contact law_repository@unc.edu.
FEASIBILITY AND CARBON CAPTURE AND SEQUESTRATION: WILL COMMERCIAL DEPLOYMENT OF CARBON CAPTURE AND SEQUESTRATION PASS THE TEST?

Margaret S. Davis

The United States’ government has developed a policy that supports the use and deployment of commercial level carbon capture and sequestration as a method for reducing carbon emissions from major electricity generating sources. The Environmental Protection Agency must determine which current provisions of the Clean Air Act are best used to regulate greenhouse gases and then apply the feasibility principle to determine what level of emissions reductions will be required. The Clean Air Act will be, at best, a clumsy tool for regulating greenhouse gases, and the feasibility determinations that the Environmental Protection Agency will have to make in setting the technology-based standards under the Act are inexact and time consuming. In order for America to act efficiently and effectively to address climate change causing greenhouse gas emissions and to put in place innovative technology, such as carbon capture and sequestration, new legislation should be enacted which establishes a new statutory regime for the regulation of these chemicals and a new, less discretionary process for putting innovative and highly effective emissions reducing technologies in place.

I. INTRODUCTION

Increasingly, implementation of methods for managing the greenhouse gas (“GHGs”) emissions that cause climate change is

1 J.D. Candidate, University of North Carolina School of Law, 2011. My appreciation and special thanks to Jonas Monast and the editorial staff of NC JOLT. Thanks also to Jovian Sackett, Eva and Mary Davis, and Tony and Meghan Deutsch.
a hot topic of discussion for America and the world.\footnote{From the U.S.'s reluctance to signing on to the Kyoto Protocol to the recent House passage of the American Clean Energy and Security Act, H.R. 2454, climate change issues have grown ever more prevalent in America and around the world. See, e.g., Alexandra B. Klass and Elizabeth J. Wilson, \textit{Climate Change and Carbon Sequestration: Assessing a Liability Regime for Long-Term Storage of Carbon Dioxide}, 58 EMORY L.J. 103, 103 (2008).} Considering the technological complexities and cost of reducing GHG emissions and America's broader policy objectives of reducing the effects of climate change, attaining a balance between existing regulation and new policies\footnote{The existing legal framework under which GHG emissions may be regulated is the Clean Air Act. 42 U.S.C. §§ 7401-7671q (2006). Programs that may be applicable to GHG regulation are the Prevention of Significant Deterioration, 42 U.S.C. §§ 7470-7479 (2006), and the National Ambient Air Quality Standard. 42 U.S.C. §§ 7408-7409 (2006); see infra Part V.A. Proposed legislation, such as the American Clean Energy and Security Act (“ACES”), would create a new regulatory framework for GHG emissions. American Clean Energy and Security Act, H.R. 2454, 111th Cong. (2009).} is a critical step in properly implementing effective emissions reductions.

\footnote{"Greenhouse gases are gases that effectively trap some of the Earth's heat that would otherwise escape to space. Greenhouse gases are both naturally occurring and anthropogenic. The primary greenhouse gases of concern directly emitted by human activities include carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride." Proposed Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act, 74 Fed. Reg. 18,886, 18,888 (Apr. 24, 2009) (to be codified 40 C.F.R. pt. 1) [hereinafter Proposed Endangerment].}

\footnote{Climate change is the change in global climatic cycles due to the build-up of GHGs emitted by humans. Daniel Brian, \textit{Regulating Carbon Dioxide Under the Clean Air Act as a Hazardous Air Pollutant}, 33 COLUM. J. ENVTL. L. 369, 370 (2008). The results of these changed cycles include increased drought, rising sea levels, increased tropical cyclone activity and ferocity, and higher average temperatures. Maxine Burkett, \textit{Just Solutions to Climate Change: A Climate Justice Proposal for a Domestic Clean Development Mechanism}, 56 BUFF. L. REV. 169, 174 (2008). Greenhouse gases “become well mixed globally in the atmosphere and their concentrations accumulate when emissions exceed the rate at which natural processes remove greenhouse gases from the atmosphere.” Proposed Endangerment, supra note 2, at 18,888.}
The feasibility principle guides the balancing of factors when determining what level of emissions reductions may be possible.6 Under the current statutory regime, the Clean Air Act’s Prevention of Significant Deterioration program would likely apply.7 Language such as “best” and “achievable” are what would guide the Environmental Protection Agency’s standard-setting decisions.8 These terms are broad and could lead to any number of standards being set. The feasibility principle guides the application of this standard by providing both a ceiling and a floor for what the standard may demand.9

The aim of this Recent Development is to consider the technology and policy that must be in place prior to the Environmental Protection Agency (“EPA”) or another federal agency finding that commercial deployment of carbon capture and sequestration (“CCS”) is a feasible means of reducing carbon dioxide (“CO\textsubscript{2}”) emissions. Part II provides a background of recent actions by the Supreme Court and United States Congress on CO\textsubscript{2} emissions. Part III discusses the technology as it stands today, specifically, the scientific and economic barriers to large-scale implementation of CSS. Part IV examines EPA’s historical and current implementation of “feasibility.” Finally, Part V addresses how current statutory language might apply to commercial deployment of CCS10 in the United States and the policy considerations that follow. As federal agencies determine the feasibility of commercial deployment of emissions reducing technologies under the Clean Air Act (“CAA”), new federal legislation, such as the American Clean Energy and Security Act,

7 See infra Part IV.B.

9 Driesen, \textit{supra} note 6 at 41–42.

10 ACES defines “commercial capacity” for CCS technology as “appl[y]ing the carbon capture and sequestration technology to the flue gas from at least 200 megawatts of the total name plate generating capacity of the unit.” American Clean Energy and Security Act, H.R. 2454 § 115, 111th Cong. (2009).
may be required to ensure proper implementation of innovative technologies.

II. BACKGROUND

In the groundbreaking case *Massachusetts vs. EPA*, the United States Supreme Court substantively weighed in on the issue of climate change for the first time. The petitioners in this case were a collection of states and non-profit organizations who requested that the EPA regulate new automobile emissions standards under § 202 of the CAA. The majority opinion declared that, to date, the scientific evidence indicates that climate change is a real and current phenomenon. As a result of this decision, the EPA released a proposed endangerment finding for GHGs. This proposed finding would list GHGs as air pollutants under the definition of air pollutant in § 302 of the CAA. Once this agency finding is final, the EPA may be obligated to promulgate regulations for GHG emissions on stationary sources.

12 Id. at 505.
13 Id.
14 Proposed Endangerment, supra note 2 at 18,886. As part of this same process, the EPA has issued a proposed regulation for emissions standards for new automobiles. Id.
16 Before making a regulatory decision under the CAA, such as an endangerment finding for GHGs, the EPA must publish its proposed rule in the Federal Register, grant time for the public to comment on the proposal, and respond to all significant comments. Only then can it finalize the rule. 42 U.S.C. § 7607(d)(2)–(7) (2006).
of carbon dioxide and greenhouse gases, such as electricity generating units and industrial factories.\(^17\)

The U.S. Congress has taken up the issue of climate change.\(^18\) In June 2009, the U.S. House of Representatives passed the American Clean Energy and Security Act ("ACES"), H.R.2454, which has vast implications for GHG emissions in the United States through provisions including national energy efficiency standards,\(^19\) a GHG cap-and-trade program,\(^20\) and funding for communities that will be directly impacted by the effects of climate change.\(^21\) A draft of the Senate’s companion bill was introduced by Senators Boxer and Kerry in September 2009,\(^22\) with floor debate on the issue possible in fall 2009, though it is more likely to occur in spring 2010.\(^23\) This proposed legislation would

\(^{19}\) H.R. 2454 §§ 101, 171–75, 201–19.

\(^{20}\) H.R. 2454 §§ 311, 321, 331.

\(^{21}\) H.R. 2454 §§ 451–82.

lead to economic constraints on sources of GHG emissions24 that are defined as regulated entities in the bills,25 creating a system in which there will be a unit price per ton on GHGs released into the atmosphere.26

As carbon regulation looms,27 either through regulatory mechanisms under current statutory structure or through new legislation,28 the coal utility industry, which is one of the largest sources of CO\textsubscript{2} emissions in the United States,29 is developing technologies to keep this fuel source a viable option.30 Power companies are exploring options such as changing to more efficient fuel sources for old electricity generating units. For example, natural gas may be used to produce electricity while emitting less CO\textsubscript{2} per unit of energy produced.31 Industry is also

24 Common sources of GHG emissions include electricity generating units and industries which use fossil fuels for combustion purposes. Inventory of U.S. Greenhouse gas Emissions and Sinks: 1990–2007, EPA 430-R-09-004, ES-6 (April 15, 2009). Additional sources of GHG emissions include landfills, fertilizer producing entities, and commercial animal production facilities. Id.

25 H.R. 2454 § 312.

27 See infra Part V.

29 Eric Williams, et al., A Convenient Guide to Climate Change Policy and Technology 36 (Nicholas Institute for Environmental Policy Solutions and The Center on Global Change, Duke University, Working Paper CCPP 07-02 July 2007). Coal-fired power plants in the U.S. “generate approximately fifty percent of electricity and produce eighty-five percent of electricity-generated carbon dioxide (CO\textsubscript{2}) emissions.” Id.

31 Williams, supra note 29, at 37–40.
exploring new technologies, which burn fuel more efficiently and thus more cleanly.32

One of the primary ways the coal utility industry hopes to reduce emissions is through the capture and storage of emissions.33 CCS is a process by which the emissions from a source,34 primarily CO\textsubscript{2}, are captured and stored indefinitely in geologic formations.35 CCS could potentially reduce a given source’s CO\textsubscript{2} emissions by eighty percent to ninety-five percent36 and could contribute to projected international CO\textsubscript{2} emissions reductions by nineteen percent.37 The risks, of course, are great.38 For instance, accidental leakage of stored CO\textsubscript{2} could create localized risks to the

34 It is a power plant in this case, but theoretically, any stationary source could have its carbon emissions captured. Paul W. Parfomak and Peter Fogler, CARBON DIOXIDE (CO\textsubscript{2}) PIPELINES FOR CARBON SEQUESTRATION: EMERGING POLICY ISSUES, CRS ORDER CODE RL33971, at 1 (Apr. 19, 2007).

35 See infra Part III.

36 Parfomak and Fogler, supra note 34, at 1.

37 Victor B. Flatt, Paving the Legal Path for Carbon Sequestration from Coal, 19 DUKE ENVT'L. & POL’Y F. 211, 212–13 (2009).

38 Klass and Wilson, supra note 4, at 118–19.
environment and public health39 and reverse any climate benefit gained from capture and sequestration.40

Despite the fact that commercial capacity41 for CCS is, at best, years away,42 Congress and industry are moving forward with research and development of this technology.43 For example, Congress included one billion dollars of funding to promote CCS research in the stimulus bill in 2009.44 Most recently, ACES, passed by the House of Representatives in June 2009, includes

\begin{flushright}
39 Id. at 118–19 ("[V]ery high concentrations (greater than [thirty percent]) CO$_2$ may cause immediate human death from asphyxiation; prolonged exposure to high concentrations of CO$_2$ (above [three percent] concentration) may cause a variety of negative health effects. Slow CO$_2$ seepage into the near subsurface could also harm flora and fauna, and potentially cause local disruptions of ecology or agriculture.") (internal citations omitted).

40 Id. at 118 ("With respect to global climate change, small surface leaks may be tolerated, but excessive CO$_2$ leaking into the atmosphere (greater than 0.01%–1% per year) will diminish the climate benefits from sequestration The risks from CCS are associated with both the sheer volume of injected material and the specific properties of CO$_2$. CCS risks will vary throughout the life-cycle of a CCS project and are affected by local and regional geology and site history. These risks will likely decrease after injection ceases, as formation buoyancy pressures naturally decrease.").

41 Commercial capacity refers to large electricity-generating units. These power plants are generally referred to by their capacity in megawatts of electricity produced. ACES defines “commercial capacity” for CCS technology as “applying the carbon capture and sequestration technology to the flue gas from at least 200 megawatts of the total name plate generating capacity of the unit.” H.R. 2454 § 115.

43 See Offen, supra note 30.

extensive provisions for research and incentives to industry to implement the technology early.45

III. CCS Technology

There are many ways in which carbon may be sequestered,46 but this Recent Development will focus on geologic CCS. CCS technology allows for the capture of the emissions from a "stationary source,"47 the purification and concentration of the CO\textsubscript{2} in those emissions, and the transportation and storage of "supercritical CO\textsubscript{2}"48 in an appropriate geologic formation for hundreds to thousands of years.49 If this sounds too simple to be true, it is. Each step takes technical precision and occurs at non-negligible cost.50

A. Capture, Purification, and Concentration

When CO\textsubscript{2} comes out of the smoke stack of an average electricity-generating unit, it comprises only fourteen to fifteen

45 Section 114 of ACES establishes a public-private partnership, Carbon Storage Research Corporation ("Corporation"), to promote deployment of CCS technologies. The Corporation receives funding through annual assessments on electric utilities and distributes and manages grants for research to promote commercial-scale CCS demonstration sites. H.R. 2454 § 114(b). The Corporation may collect between $1 and $1.1 billion each year through assessments. H.R. 2454 § 114(d)(1)(B). ACES instructs the Corporation to distribute 50\% of its grants to entities that have employed CCS technology in advance of any grant awarded under this bill. H.R. 2454 § 114(c)(4). In doing so, the bill rewards these so called "early movers" and promotes early deployment of commercial-scale CCS technology. See id.

46 Williams, supra note 29, at 230–40. For example, carbon may be sequestered through biological functions in forests and oceans. Id.

47 See supra note 15.

48 Williams, supra note 29, at 243–44 ("At pressures above 73 atmospheres and temperatures above 31.1\textdegree C, CO\textsubscript{2} exceeds its critical point and enters the supercritical phase, a homogenous state that has properties midway between those of a gas and liquid.") (internal citations omitted). Id. See also infra note 62.

49 See, e.g., id. at 241; Edward Rubin, et al., Technical Summary, in IPCC SPECIAL REPORT ON CARBON DIOXIDE CAPTURE AND STORAGE 17, 25 (Bert Metz et al. eds., 2005) [hereinafter IPCC SPECIAL REPORT].

50 See infra Parts II.A–C.
percent of the concentration of the emissions.51 While it is technically possible to transport and sequester that gas stream in its entirety, the process is cost-prohibitive.52 Storing the entire stream of emission, without concentrating and removing the CO\textsubscript{2}, would result in transporting and storing at least eighty-five percent more volume than required for simply storing CO\textsubscript{2}. Thus, it is necessary to capture and concentrate a pressurized stream of CO\textsubscript{2} for transportation.53

The upfront costs of retrofitting an existing coal-fired power plant or constructing a new plant with the technology to capture, clean, and pressurize its emission stream for geologic storage are great.54 The technology to capture CO\textsubscript{2} from a stream of emissions is used in multiple industrial sites for purification of other gases such as hydrogen and natural gas.55 Currently, technology exists allowing for carbon capture in one of three ways: post-combustion,56 pre-combustion,57 and oxyfuel combustion.58

51 IPCC SPECIAL REPORT, supra note 49, at 25. The majority of gasses that make up the rest of the emissions are nitrogen oxides and other common atmospheric compounds. \textit{Id.}

52 Id.

53 Id.

54 Id. at 27. "CO\textsubscript{2} capture increases the cost of electricity production by 35–70\% . . . for [a natural gas combined cycle] plant, 40–85\% . . . for a supercritical [pulverized coal] plant, and 20–55\% . . . for an [integrated gasification combined cycle] plant. Overall, the electricity production costs for fossil fuel plants with capture (excluding CO\textsubscript{2} transport and storage costs) ranges from 0.04–0.09 [United States’ dollar per kilowatt hour], as compared to 0.03–0.06 [United States’ dollar per kilowatt hour] for similar plants without capture." \textit{Id.}

55 Id. at 25. “Applications separating CO\textsubscript{2} in large industrial plants, including natural gas treatment plants and ammonia production facilities, are already in operation today. Currently, CO\textsubscript{2} is typically removed to purify other industrial gas streams.” \textit{Id.}

56 Id. In a post-combustion system, the stream of gases emitted after the fuel is burned is forced through a liquid solvent, resulting in a concentration and purification of the emissions. See \textit{Id.}

57 Id. In a pre-combustion system, the fuel source is processed “with steam and air or oxygen to produce a mixture consisting mainly of carbon monoxide and hydrogen.” Another mixture is then combined with the carbon monoxide to produce a pure stream of hydrogen, which can be used as a fuel source for electricity production, and pure CO\textsubscript{2}, which can be processed and stored. \textit{Id.}
Each has its benefits and costs, and use of one technology over another depends on site-specific characteristics. Once an emission stream has been captured, it must be purified and compressed. In its “supercritical” state, after purification and compression, CO₂ acts neither entirely as gas nor as liquid and is transportable to the injection site.

Anywhere from ten to forty percent additional energy is required to capture and compress a stream of CO₂. With this energy consumption additional to the amount used to produce electricity without carbon capture, total emissions would still be reduced by as much as eighty to ninety percent. The additional energy required for capturing CO₂ emissions and preparing them for transportation and storage, then balances out with the emissions savings. In the current regulatory scheme, there is no additional cost put on carbon emissions. If that changes and a regulatory scheme is enacted which puts a cost on carbon, then the economic

58 ld. The third method for capturing CO₂ from an emissions source is oxyfuel combustion. This process uses “oxygen instead of air for combustion of the primary fuel to produce a flue gas that is mainly water vapour and CO₂.” The emissions from this type of combustion have a very high concentration of CO₂, and treatment for removal of water vapor and other pollutants is necessary before transport and storage. ld.

59 ld. For example, “[p]re-combustion would be used at power plants that employ integrated gasification combined cycle (IGCC) technology.” ld.

60 ld.

61 Williams, supra note 29, at 243.

62 ld. In order to be transported through pipeline, CO₂ must be at 100 atmospheres of pressure. ld. Since CO₂ reaches its supercritical state at any pressure above 73 atmospheres, CO₂ must be in a supercritical state in order to be transported via pipeline. ld.

63 IPCC SPECIAL REPORT, supra note 49, at 25.

64 ld.

65 ld.

66 See supra Part II, discussing Massachusetts v. EPA. “Carbon,” in this sense, includes other GHGs as well. See, e.g., H.R. 2454 § 311. There are accepted “equivalency” values established for other GHGs that can be used to gauge the impact on the environment of such chemicals compared to the impact of carbon. ld.

67 For example, ACES, passed by the House of Representatives this June, would enact such a scheme. H.R. 2454 Title III. It has been suggested that the cap-and-trade provisions of ACES would put a cost on carbon of approximately
scales may tip in favor of limiting the amount of CO\textsubscript{2} in emissions. Other technological considerations, such as fuel source and newer combustion technology, reduce CO\textsubscript{2} emissions in coal-fired power plants. A combination of CCS technology and other efficiency measures should be considered when determining the appropriate way to limit CO\textsubscript{2} releases in the atmosphere. By increasing efficiency at the power plant, in transmission, and at points of consumption, costs incurred to comply with GHG emissions reduction regulations could be at least partially offset.

B. Transportation

While supercritical CO\textsubscript{2} can be transported by truck, boat, or train, the least expensive transportation method is via pipeline. Least expensive is perhaps a misleading phrase, though. Depending on the diameter of the pipeline, it can cost anywhere from many hundreds of thousands of dollars per mile to over a million and a half dollars per mile. Costs included in this range are purchase of rights-of-way, pipeline construction, and materials. These costs can increase if the pipeline must be sited twenty dollars per ton. David Serchuk, *Calculating the True Cost of Carbon*, FORBES.COM, June 3, 2009, http://www.forbes.com/2009/06/03/cap-and-trade-intelligent-investing-carbon.html (on file with the North Carolina Journal of Law & Technology).

68 Id.
69 IPCC SPECIAL REPORT, supra note 49, at 39.
70 Id. at 26.
71 Id.
73 Id.
74 Williams, *supra* note 29, at 244.
75 Id. at 245. According to this CCPP report, pipeline that is sixteen inches in diameter can cost $704,000 per mile, and pipeline 36 inches in diameter can cost $1,584,000 per mile. Id. “Steel cost accounts for a significant fraction of the cost of a pipeline, so fluctuations in such cost (such as the doubling in the years from 2003 to 2005) could affect overall pipeline economics.” IPCC SPECIAL REPORT, *supra* note 49, at 30.
through heavily populated or physically unstable areas such as wetlands.77

Pipeline siting and construction is not new technology,78 and the transportation of CO\textsubscript{2} should pose little in the way of a technological challenge.79 It has been proposed that existing natural gas pipeline rights-of-way be used to site CO\textsubscript{2} pipelines80 and that industrial emitters cooperate to construct a nationwide CO\textsubscript{2} pipeline.81 Such a coordinated effort would reduce costs to individual emitters and would create a more efficient transport mechanism to possibly distant storage sites.82

C. Sequestration/Storage

Sequestration of CO\textsubscript{2} requires injection into an appropriate geologic formation and trapping the CO\textsubscript{2} in that formation for hundreds to thousands of years. Injection of supercritical CO\textsubscript{2} into geologic formations is a common practice in the industrial practice of enhanced oil and natural gas recovery.83

77 Id.
78 Id. at 26.
79 Williams, supra note 29, at 244. “Unique engineering and safety considerations for CO\textsubscript{2} piping projects include: CO\textsubscript{2} must be completely dehydrated to prevent carbonic acid formation and degradation of the pipeline. Supercritical CO\textsubscript{2} physical and chemical properties necessitate the use of specific materials and sealants.” Id. at 244.
80 It is no small feat to acquire the necessary rights-of-way to construct an interconnected, nationwide pipeline network. Jonas Monast, From Carbon Capture to Storage: Designing an Effective Regulatory Structure for CO\textsubscript{2} Pipelines, 8 (Nicholas Institute for Environmental Policy Solutions and The Center on Global Change, Duke University, Working Paper CCPP 08-05 December 2008). Using an existing network for as much of the citing as possible would greatly reduce risk and cost to investors. Williams, supra note 29, at 246. Of course, emitters coordinating in such an effort would then have to negotiate usage with the current owners of the natural gas pipeline rights-of-way. Id. Alternatively, the federal government could coordinate such efforts through policy changes, funding, or other methods. Id.
81 Williams, supra note 29, at 246.
82 Id.
83 IPCC SPECIAL REPORT, supra note 49, at 19.
Three primary geologic formations seem appropriate for sequestration and storage of CO₂.⁸⁴ Unminable coal seams, depleted oil and natural gas fields, and saline aquifers all provide possible storage capacity for captured CO₂.⁸⁵ Research on the possible implications of each formation is currently underway.⁸⁶ Many sites that are appropriate for coal-fired power plants are in reasonable proximity to geologic formations that are possibly appropriate for CO₂ storage,⁸⁷ so site selection for future power plant construction could play a big role in the economic impact of CCS on each plant. In the U.S., the Appalachian Basin, the Midwest, and Gulf Coast regions contain identified geologic formations appropriate for sequestration of carbon.⁸⁸

Of additional concern is the longevity of the storage potential at each site. If the purpose of implementing CCS technology is to reduce emissions as a way to address global climate change, then the sequestered carbon must remain stored for hundreds, if not thousands of years.⁸⁹ To date, the longest running research facility with commercial CCS capacity⁹⁰ has been operational for thirteen years.⁹¹ The scientific data upon which the CCS research projects are based indicate chemical processes which should take thousands of years to conclude, thus trapping the injected CO₂ for at least that

⁸⁴ Id. at 31.
⁸⁵ Id. at 25.
⁸⁶ Offen, supra note 30, at 7.
⁸⁷ IPCC SPECIAL REPORT, supra note 49, at 25.
⁸⁸ Williams, supra note 29, at 243-44. These regions contain both depleted oil and natural gas fields and unminable coal seams. Id.
⁸⁹ See generally Proposed Endangerment and Cause or Contribute Findings for Greenhouse Gases Under Section 202(a) of the Clean Air Act, 74 Fed. Reg. 18,886, 18,888 (April 24, 2009) (to be codified 40 C.F.R. pt. 1). The amount of time that CO₂ remains in the atmosphere is on the order of up to hundreds of years. Id. In order to effect the changes already occurring, future CO₂ emissions that are sequestered need to remain trapped for that amount of time. Id.
⁹⁰ The Sleipner Project in Norway has been operational since 1996. IPCC SPECIAL REPORT, supra note 49, at 201–02. The site injects 3000 tons of carbon a day into a saline aquifer. Id.
⁹¹ Id. at 201.
While all indications are that CO₂ is remaining where it is put, it is premature to say the data are complete.

IV. TECHNOLOGY-BASED STANDARDS AND THE FEASIBILITY PRINCIPLE

A. Technology-Based Standards

Technology-based standards are emissions control levels established by the EPA on a particular technology's achievable level of emissions reductions. Once the EPA establishes a technology-based standard for a statutory provision, all regulated entities in the relevant class of industry should meet the emissions reduction achievable under that standard. These kinds of standards are found in both the Clean Water Act and the CAA.

Technology-based standards were first incorporated into the CAA in the 1970 amendments to § 111. Prior to that date, implementation of emissions reductions were based on increasing levels of federal involvement in state programs. In 1955, "Congress initially responded to the problem of air pollution by offering encouragement and assistance to the States." After several rounds of amendments, Congress included the § 111

92 Id. at 32.
93 Williams, supra note 29, at 246–47.
94 Currently, data have been collected for just more than a decade. In order for CCS to achieve climate change related-goals, the CO₂ will have to remain underground for hundreds to thousands of years. See, e.g., IPCC SPECIAL REPORT, supra note 49 at 204–05 (explaining the status of CCS pilot projects and raising questions currently unanswered about sequestration technology).
95 Patricia Ross McCubbin, The Risk in Technology-Based Standards, 16 DUKE ENVTL. L. & POL’y F. 1, 2 (2005); Driesen, supra note 6, at 17–18.
96 See, e.g., McCubbin, supra note 95, at 2; Portland Cement Ass’n v. Ruckelshaus, 486 F.2d 375, 389 (D.C. Cir. 1973).
100 McCubbin, supra note 94, at 2.
102 Id. at 63–64.
standards in the New Source Performance Standards provisions of the CAA.103 In making this shift to technology-based standards, Congress set guidelines by which the EPA would regulate emissions reductions and achieve environmental and public health benefits.104

As will be discussed in Part V, of particular interest in considering GHG regulation and possible implementation of CCS is the CAA’s “best available control technology” requirement (“BACT”).105 BACT sets a maximum level of emissions for each pollutant based on the emission-reducing ability of the technology that the EPA deems the “best available.”106 In setting BACT, the EPA must consider “energy, environmental, and economic impacts and other costs.”107

B. Applying the Feasibility Principle to Technology-Based Standards

"Feasible" is defined as both “capable of [being] accomplished or brought about” and to “deal with successfully.”108 The definition also includes “possible.”109 The feasibility principle relates to the EPA’s BACT determinations in that it “provides guidance [as EPA] decide[s] how much pollution reduction to

103 42 U.S.C. § 111.
104 See generally Driesen, supra note 6, at 18 (discussing Congress’s use of technology-based standards to guide administrative agencies’ decision making).
107 Id.
109 Id.
demand." When reading the term “best available demonstrated control technology,” it is not necessarily clear how to determine what is “best” and what is “achievable.” The concept of feasibility, therefore, guides the application of the BACT standard by providing both a ceiling and a floor for what the standard may demand. The standard cannot be stringent enough to force most or many of the regulated entities to close their doors, nor can it be so lenient as to allow pollution to continue at the pre-regulation rates. The former would not be “reasonable”; the latter would not be “the best.”

During the debates on the 1970 Amendments to the CAA, members of Congress recognized the possibility that new standards could lead to plant shutdowns. Congress also recognized the importance of improving public health and established strict technology-based standards. Since the implementation of these standards, the courts have interpreted the CAA’s technology-based standards with great deference to the EPA. In Lignite Energy Council v. EPA, the D.C. Circuit noted that “[b]ecause section

110 Driesen, supra note 6, at 18.
111 Id.
112 Id. at 41-42.
113 Id.
115 Id.
117 Lignite Energy Council, 198 F.3d at 933. The Petitioners in this case challenged the EPA’s implementation of CAA § 111, New Source Performance Standards, for nitrogen oxide emissions from electricity generating units as too restrictive. Id. Petitioners argued that EPA chose a more expensive technology when setting the technology-based emissions standard, and that the industry could reach nearly the same result with less expensive technologies. The Court
111 does not set forth the weight that should be assigned to each of [the enumerated factors that the EPA must consider when setting a technology-based standard],118 we have granted the agency a great degree of discretion in balancing them.119 In a concurring opinion in \textit{Union Electric v. EPA}, Justice Powell reasoned that Congress could not have meant to impose a standard so strict so as to force certain critical utilities to shut down.120 He noted that Congress established a clear intention to protect the public welfare through the 1970 CAA Amendments, but he could not believe that Congress would find it reasonable to force compliance when adherence to the standards established therein could lead to no electricity supplied to a major metropolitan area.121 He concluded that feasibility must play some role in the EPA’s discretion in setting the technology-based standard.122

The court in \textit{Essex Chemical Corp. v. Ruckelhaus}123 described the level of discretion the EPA has in setting a technology-based standard in terms of reasonableness.124 “An achievable standard is granted discretion to the EPA and upheld the more expensive, more restrictive technology. Id.125

118 For BACT, those factors are “energy, environmental, and economic impacts and other costs.” 42 U.S.C. § 7479(3) (2006).

119 198 F.3d at 933.

120 \textit{Union Electric}, 427 U.S. at 269 (Powell, J., concurring).

121 Id. According to Justice Powell:

\begin{quote}
Environmental concerns, long neglected, merit high priority, and Congress properly has made protection of the public health its paramount consideration. But the shutdown of an urban area’s electrical service could have an even more serious impact on the health of the public than that created by a decline in ambient air quality. The result apparently required by this legislation in its present form could sacrifice the well-being of a large metropolitan area through the imposition of inflexible demands that may be technologically impossible to meet and indeed may no longer even be necessary to the attainment of the goal of clean air. . . . Congress, if fully aware of this Draconian possibility, would strike a different balance.
\end{quote}

\textit{Id.} at 270–72.

122 Id. at 269.

123 486 F.2d 427 (D.C. Cir. 1973).

124 Id. Petitioners in this case were operators of sulfuric acid plants and coal-fired power plants, and they were challenging the EPA’s technology-based standard under CAA § 111. \textit{Id.} The Petitioners argued that the EPA set a
one which is within the realm of the adequately demonstrated system’s efficiency and which, while not at a level that is purely theoretical or experimental, need not necessarily be routinely achieved within the industry prior to its adoption.” This sort of guidance leads the EPA to a standard that may be reasonably achieved—in short, one that is feasible.

In addition to applying the feasibility principle when balancing the “energy, environmental, and economic impacts and other costs” associated with implementing a proposed standard, the EPA is subject to political pressures in favor of minimizing negative economic impact to industry. Thus, despite great discretion from courts and clear Congressional intent that public health be top priority, the EPA often gives serious consideration to the number of firms that will be put out of business during the process of proposing standards. Executive Order 12,291 adds political pressure that draws the EPA away from pure feasibility determinations when setting technology-based standards. This order, signed originally by President Reagan and subsequently signed by every president since, requires that all substantive agency action be cleared through the Office of Management and

standard that had not been demonstrated in practice to achieve the emissions reductions that EPA claimed were required under the new standard. Id. The court found that “the system [on which the technology-based standard is set]... must be adequately demonstrated and the standard which must be achievable. This does not require that a sulfuric acid plant be currently in operation which can at all times and under all circumstances meet the standards; nor, however, does it allow the EPA to set the standards solely on the basis of its subjective understanding of the problem or “crystal ball inquiry.” Id.

125 486 F.2d at 433–34.
126 Id. at 433.
128 Driesen, supra note 6, at 46.
130 See Union Elec. v. EPA, 427 U.S. 246, 258–59 (discussing the Congressional intent when amending the CAA in 1970).
131 Driesen, supra note 6, at 43 n.249.
Budget (OMB). The review of proposed regulation by the OMB is intended to "reduce the burdens of existing and future regulations, increase agency accountability for regulatory actions, provide for presidential oversight of the regulatory process, minimize duplication and conflict of regulations, and insure well-reasoned regulations." The result, however, is a cost-benefit analysis of all regulations promulgated and major actions taken by federal agencies, in this case the EPA. Thus, despite the intent of Congress in establishing a strict set of standards to protect the public's health by controlling emissions of pollutants into the air, the estimated economic cost of any proposed technology-based standard weighs heavily in the balance against any possible benefit to society.

V. FEASIBILITY OF CCS

A. Applying a Technology-Based Standard to GHGs

Since Massachusetts v. EPA, the EPA has indicated that it will most likely attempt to regulate stationary sources of GHGs under the CAA’s Prevention of Significant Deterioration ("PSD") program. In April 2009, the EPA published its proposed

135 Id.
136 Driesen, supra note 6, at 79. "While an agency must justify decisions taken under feasibility mandates in terms of feasibility, cost-benefit considerations will generally govern its negotiations with the Office of Management and Budget (OMB)." Id.
137 Id. at 83.

On December 18, 2008, in order to address an ambiguity that existed in the federal PSD regulations, then-EPA Administrator Stephen Johnson issued a memorandum setting forth the official EPA interpretation regarding which pollutants were 'subject to regulation' for the purposes of the federal PSD permitting program.

...
endangerment finding for GHGs, stating that GHGs “in the atmosphere endanger the public health and welfare of current and future generations.” This finding, once final, will allow the EPA to move forward in regulating GHGs as an air pollutant under § 302 of the CAA. In September 2009, EPA staff indicated that the EPA would also be moving forward to regulate GHG emissions from stationary sources, in addition to the currently-regulated mobile sources. In October 2009, the EPA published a proposed rule for the possible regulation of GHGs emissions from stationary sources under PSD. Under PSD, the technology-based standard for new sources is BACT. As such, if no new legislation is proposed and EPA regulates the emissions of GHGs under current CAA provisions, the BACT standard would apply to new sources and sources emitting more than 25,000 tons of GHGs each year. BACT requires the EPA to consider “energy, environmental, and economic impacts and other costs” for each regulated source. BACT requires the EPA implement emissions control technologies that are reasonably cost effective for the environmental and health

The Memo was necessary after issues were raised regarding the scope of pollutants that should be addressed in PSD permitting actions following the Supreme Court’s April 2, 2007 decision in Massachusetts v. EPA, 549 U.S. 497 (2007).

Id.

141 See supra notes 8 and 10.
145 Id.
146 Id.
147 Id.
benefits they achieve. If PSD applies only to new and modified sources of emissions. If the EPA pursues regulation of GHGs under PSD, all existing sources of GHG emissions will remain unregulated until such time as they undergo major modification.

B. Applying the Feasibility Principle to Commercial Capacity

CCS

All of this raises the ultimate question: will commercial CCS be feasible as the best achievable technology for controlling CO₂ emissions from stationary sources? To determine if CCS is an "achievable" technology, it must first be determined if CCS could successfully capture and permanently store CO₂ emissions from power plants. This question must be asked strictly from an engineering perspective. As described in Part III, the technologies required for capture and transport are all available. Multiple forms of technology exist and are regularly used in other industries to implement the end result of capturing CO₂ emissions, purifying them, and transporting them to an injection site. As discussed above in Part III, injection of supercritical CO₂ into geologic formations is a common practice in the industrial practice of enhanced oil and natural gas recovery. Therefore, all steps up to and including storage of CO₂ are within the reach of current technology and are feasible. The question yet to be answered with regard to long term technical feasibility of commercial CCS is whether these geologic formations into which CO₂ is injected will

148 See, e.g., McCubbin, supra note 95, at 15; Part IV.B.
150 Brian, supra note 3, at 388, 405–06.
151 See generally Driesen, supra note 6, at 11–13.
152 Id. If a technology will not work or will not meet the emissions reductions necessary to meet the regulatory goal, then that technology will not be feasible. Id.
153 See supra Parts III.A–B (discussing the industrial uses of CO₂ capture for enhanced oil and gas recovery).
154 See id.
155 IPCC SPECIAL REPORT, supra note 49, at 19.
contain this huge volume for hundreds to thousands of years.156 The scientific data upon which the CCS research projects are based indicates chemical processes which should take thousands of years to conclude, thus trapping the injected CO\textsubscript{2} for at least that long.157 Data indicate that positive results for successful storage are likely, though results are inconclusive at this time.158

Assuming that permanent storage of injected CO\textsubscript{2} is possible, the next step in the feasibility determination must be to estimate the effectiveness of the proposed technology in terms of meeting the regulatory goal.159 Is it the "best"? The goal in this case would be reduction of CO\textsubscript{2} emissions from electricity generating units significant enough to affect climate change.160 The data indicate that CCS can reduce CO\textsubscript{2} emission to between eighty and ninety percent.161 It is beyond the scope of this Recent Development to determine how great GHG reduction must be to make a difference in climate change,162 however, a CO\textsubscript{2} emissions reduction of eighty to ninety percent from the second largest source of emissions in the United States falls well within the estimates of required GHG emissions reduction necessary to achieve America's climate change goals.163

The third and last step in a feasibility analysis is to determine if the benefit expected through implementation of the technology is worth the cost to the industry and the nation.164 The feasibility of

156 See supra note 89 (discussing the longevity of carbon in the atmosphere).
157 IPCC SPECIAL REPORT, supra note 49, at 32.
158 Offen, supra note 29, at 7.
159 See, e.g., McCubbin, supra note 94, at 11–14.
160 See, e.g., Flatt, supra note 37, at 213–14; IPCC SPECIAL REPORT, supra note 49, at 19.
161 IPCC SPECIAL REPORT, supra note 49, at 25.
162 See, e.g., H.R. 2454 § 311 (establishing a process by which the U.S. Congress can monitor international progress in GHG emissions reductions). Because the United States has no jurisdiction outside its own borders, it cannot induce other nations to reduce their GHG emissions without making dramatic reductions domestically. Id. (adding § 701(a)(6) to the CAA).
163 Id. (adding § 702 to the CAA).
164 See, e.g., McCubbin, supra note 95, at 11–14 (explaining how the “best practicable technology” and “best conventional technology” standards weigh both costs and risk reduction benefits of a technology).
CCS should be considered in the context of the reason GHG regulation is pending in the first place: the potentially vast reach of the effects of climate change, both geographically165 and across social and economic strata, should place an extremely heavy weight in favor of implementing strict regulations on GHG emission sources.166 For risks to public health and welfare so great,6 the balance here may tip in favor of finding even a very expensive technology feasible.168

However, one must consider the cost of implementing CCS technology at the commercial level, and one must give this factor the weight the EPA would likely give it when setting a BACT standard.169 A detailed economic analysis of the electricity producing industry is beyond the scope of this Recent Development. However, the system for distributing costs to consumers in the electricity industry allows companies to pass on a large portion of the expected rate increases,170 and thus, the electricity generating industry would not expect large numbers of

165 See Burkett, \textit{supra} note 3, at 174. It is projected that climate change will impact communities across the globe. \textit{Id.} Of course, sea level rise is an immediate concern for millions of people, as is the melting of glaciers and changing arctic seasons, but increased changes in arid conditions are also of concern. \textit{Id.}

166 See generally McCubbin, \textit{supra} note 95, at 34.

167 See infra note 168.

168 See, e.g., McCubbin, \textit{supra} note 94, at 34. \textit{“[I]n one of its first regulations [promulgated under the Hazardous Air Pollutant program, \S\ 112 of the CAA,], for example, EPA expressly cited the relatively high toxicity of chromium to justify more stringent—and therefore more costly—regulation of large chromium electroplaters. Although the technology on which it planned to base the emission standards had ‘very high costs of control compared to the associated chromium emission reductions,’ those high costs of control were ‘reasonable’ according to the Agency when weighed against, among other things, the ‘high toxicity of chromium,’ which was 1500 times more toxic than benzene.” \textit{Id.} (internal citations omitted).}

169 See \textit{supra} Part IV.B (discussing the political pressures which make the EPA give heavy weight to the cost of a technology when setting a technology-based standard).

170 See IPCC \textit{SPECIAL REPORT, supra} note 47, at 27 (“Overall, the electricity production costs for fossil fuel plants with capture (excluding CO\textsubscript{2} transport and storage costs) ranges from 0.04–0.09 US$/kWh, as compared to 0.03–0.06 US$/kWh for similar plants without capture.”).
The political pressure to implement a less expensive technology for reducing GHG emissions would be great. Congress can help ease this burden by establishing a clear policy of support for research and development of CCS. Such a policy could include funding pilot CCS projects through legislation, which would allow Congress to help offset some of the costs to industry. Congress can go farther by offering financial incentives for individual project implementation, again reducing the cost and increasing the feasibility of CCS.

Assuming, then, that CCS would be found to be “best” and “achievable” if EPA applied the feasibility principle when setting a BACT standard for CO₂ emissions, it remains to be seen whether regulation of this technology will be enacted under the current statutory framework or if Congress will pass legislation to implement commercial deployment of CCS technology. The CAA’s PSD is a cumbersome tool for implementing GHG reductions as only new or modified sources would be subject to regulation. Moreover, the EPA has been reluctant to move forward with promulgating such rules under the CAA. For example, the EPA has long been under pressure to regulate GHG emissions from mobile sources, but did not take the steps necessary to do so until forced through litigation. The petitioners in Massachusetts vs. EPA “were asking the Court to give them through litigation what they had failed to achieve from

171 See generally CONGRESSIONAL BUDGET OFFICE, THE ESTIMATED COSTS TO HOUSEHOLDS FROM THE CAP-AND-TRADE PROVISIONS OF H.R. 2454 (June 19, 2009) (discussing the increased cost of energy per household due to the proposed cap-and-trade system in ACES). Industries other than electricity generation, however, may not have the same sort of rate distribution. If CCS was established as BACT, the economic burden on these other industries may be great enough to cause plant closures.

172 See supra Part IV.B.

173 See generally Offen, supra note 30, at 7 (reporting on projects to develop carbon capture technologies conducted by the Electrical Power Research Institute).

174 Bravender, supra note 105 (reporting on the EPA’s decision to propose a green house gas emission reduction rule in the absence of federal legislation).

176 Id. at 2.
lobbying the legislative or the executive branch,"177 namely, that the EPA find that climate change is harmful to the public and that GHGs cause climate change.178 While the EPA has since made the required determinations,179 it is reasonable to question whether the EPA would take similar steps towards regulating GHG emissions from stationary sources in a timely manner.180

Alternatively, if the current statutory framework is unwieldy and EPA action too slow, Congress could provide support for this technology and could base the regulation of CCS on scientific evidence and broad policy considerations through legislation. In doing so, Congress could implement laws that take effect within specific timeframes, thus addressing the issue of America’s GHG emissions reductions directly.181 For example, ACES proposes the removal of much of EPA’s discretion in setting atmospheric GHG levels and in determining when to implement CCS technology.182

177 Id.
178 Id.
180 See generally Reitze, supra note 175, at 2. Once mandated by the Supreme Court (2007), it took the EPA two years to publish proposed regulations to regulate GHG emissions from mobile sources. Those regulations are not yet final. The determinations the EPA will have to make and the rules it will have to promulgate (if it regulates GHG emissions from stationary sources) could take at least that long again. Id.
181 At no time during the implementation or multiple amendments to the CAA was climate change contemplated by law makers. Id. This law is simply not written to address the problems caused by GHGs. Id. In order to avoid using this dull and ill-suited tool, Congress needs to craft a precise and explicit law to implement dramatic reductions in GHG emissions. Id at 32.
182 ACES would create an incentives program, beyond Corporation grants for “early movers” (see supra note 44), to promote CCS technology deployment through the allocation of bonus allowances. H.R. 2454 § 115(c)(3). For the years 2014 to 2017, this program would receive two percent of all allowances. H.R. 2454 § 115(e). From 2018 to 2050, ACES increases that to five percent of all allowances. H.R. 2454 § 115(e).

Domestic electricity generating units (“EGUs”) fueled by at least fifty percent coal or pet coke, with nameplate capacity of at least 200 megawatts, which permanently capture and store at least fifty percent of their emissions, and are in compliance with all permits, are eligible for the bonus allowance allocations for
The bill also provides incentives for power plants that implement CCS technology as soon as possible. The benefit of regulating CCS under a cap-and-trade program like the one proposed in ACES is that it takes GHG level determinations out of the discretion of the EPA or regulating agency. By giving the EPA a strict framework within which to implement CCS, Congress can promote a federal policy in support of this technology, providing funds for research and development and establishing a deadline for industry-wide implementation. The EPA would have little to do other than implement Congress’s explicit charge.

The one decision left to EPA discretion in ACES’ CCS provisions can be found in § 311, which states, “the Administrator may extend the deadline for compliance by a covered [electricity generating unit] by up to [eighteen] months if the Administrator makes a determination, based on a showing by the owner or operator of the unit, that it will be technically infeasible for the unit to meet the standard by the deadline.” This clause, while reasonable enough on its face, may provide enough leeway to

the first 10 years of operation. H.R. 2454 § 115(b). EGUs permitted between 2009 and 2015 will be discounted some value for the amount of time they operated without CCS technology in place, H.R. 2454 § 115(c)(2), and EGUs permitted after 2015 will not be able to receive bonus allowances unless at least fifty percent of emissions are captured as soon as operation commences. H.R. 2454 § 115(e)(3). Non-electricity generating industry is also eligible for up to fifteen percent of allowances, under specific criteria. H.R. 2454 § 115(f).

Phase I provides bonus allowances for the first 6 gigawatts of generating capacity to install CCS technologies. H.R. 2454 § 115(c)(1). Once this threshold is met, Phase II of the program becomes effective. H.R. 2454 § 115(d)(1). ACES directs the EPA to promulgate a regulation to determine the appropriate way to distribute allowances in Phase II. H.R. 2454 § 115(d)(2). The bill suggests reverse auctions as the preferred method of distribution in Phase II and creates a competitive bidding system for the value of bonus allowances. H.R. 2454 § 115(d)(3). In creating a competitive system for distribution of allowances in Phase II, ACES provides incentives for entities to employ CCS technologies earlier rather than later in order to reap the benefits of Phase I’s more valuable allowances.

See supra note 182.

See, e.g., the levels proposed in ACES § 311 (adding § 721 to CAA).

H.R. 2454 § 116(a).

Id. (adding § 812(b)(3) to CAA).
forestall CSS implementation for quite some time.188 It is unclear from the language of the bill if the extension is renewable or if it is available to each operator only once.189 Additionally, if CCS is deemed infeasible for one applicant at the time of application for extension, might there be a rush of other applicants also wishing to postpone the implementation of CCS? Another question raised by this language is how many eighteen month extensions the EPA may grant.

VI. CONCLUSION

If the EPA is left to regulate GHGs under the CAA, it is likely to do so under PSD. PSD is a blunt tool for addressing GHG emissions reductions as that program applies only to new and modified sources. Additionally, under PSD, the EPA would set the BACT standard for GHG emission by applying the Agency’s discretion using the feasibility principle as a guide. If this is the route used to regulate GHG emissions, then implementation of CCS is questionable. It is a costly technology that is still in the research and development stage.

If, however, Congress passes new legislation specifically tailored to GHG emissions reduction, such as ACES, it could include provisions to promote deployment of CCS, such as financial support for research and development of the technology and a specific timeline for deployment of commercial CCS. Under such a scheme, the EPA would have stricter bounds and less discretion, thus increasing the likelihood that CCS and other innovative and costly GHG emissions reducing technologies will be developed and deployed for commercial use.

188 Id.
189 Id.